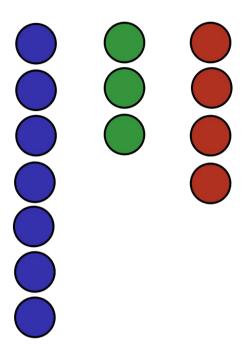

Minimax

Gwylim Ashley

Game tree

- Minimax can be applied to two player, non-random games where players alternate
- It is possible to construct a tree representing possible moves and resulting states
- •Selecting the best move for each player in each state, it is possible to determine the worst possible outcome for a player using an optimal strategy


Example - Nim

Rules

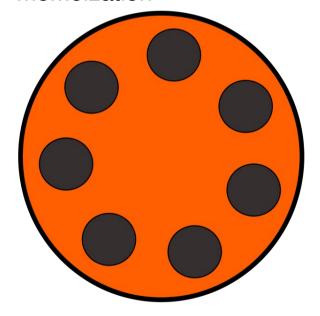
- There are a number of heaps of objects
- •A player must remove one or more objects from a heap on their turn
- •If they can not, they lose

Solution

- •Xor the number of objects in each heap, if 0, then this is a losing position, otherwise, it is a winning position
- •A losing position is one in which it is only possible to move to a winning position
- •A winning position is one in which it is possible to move to a losing position

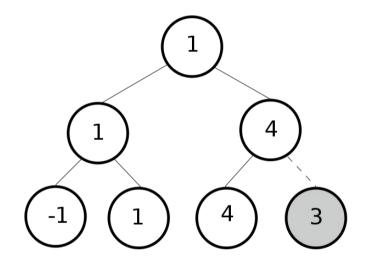
111

011


100

DP Example - Ioiwari

Game is played on a circular board with 7 holes around the edge and 20 beads distributed in the holes. Each player has a bank representing their score On their turn, a player takes the beads from a hole, and for each other hole in a clockwise direction:


- 1.If one bead in his hand, and the hole has1-4 beads, put them and the one in his hand into the bank
- 2.If one bead in his hand, and the hole has 0 or 5 beads, put the one in his hand into the opponents bank
- 3.Otherwise if the hole has 5 beads, one is placed into his bank
- 4.Or if the hole has less than 5, one bead from his hand is placed into the current hole

There are only 6^7 possible arrangements of beads, so the game can be solved by memoization

Alpha-Beta pruning

- •If one branch is guaranteed to be worse than another, it can be discarded
- •This is possible due to the fact that there are two players

